

The universAAL Primer

Advanced

1

Introduction
The EU-funded project universAAL aims to produce an open platform
that provides a standardized approach making it technically feasible and
economically viable to develop AAL solutions. More information is
available at http://universaal.org/.

This Advanced Primer Book intends to give an overview of the
universAAL Execution Platform and its API. The core concepts of uAAL
are explained and these are accompanied by indicative diagrams and
snippets of code showing API usage.

The targeted audience is code developers with some interest in the field
of AAL, and knowledge about ICT and programming is strongly
recommended, and required to understand the code snippets. It is also
recommended that the reader has completed the Basic Primer Book.
The code shown in this version of the Advanced Primer Book is in Java.

Take into account that the content of this Primer does neither replace
nor take precedence under any circumstance over the official contents,
code and API developed in project universAAL, reported in the public
deliverables available in http://universaal.org/es/about/deliverables and
documentation reachable at http://depot.universaal.org/.

The current version of this Primer is compatible with the release 2.0 of
the universAAL Execution Platform. The software sources and binaries
are available through http://forge.universaal.org/gf/.

Contents
Middleware 2

Ontologies 5

Context Events 7

Context Publishers 9

Context Subscribers 10

Service Ontology 11

Service Callees and Profiles 12

Service Callers and Requests 14

User Interaction Forms 15

User Interaction Callers 17

User Interaction Handlers 18

Managers 19

2

Middleware
The Middleware is the core part of uAAL platform and takes care that all
uAAL nodes in a Space can cooperate one with each other. It establishes
peer to peer communications between them so that they can share the
different kinds of uAAL semantic communication: Context, Service and
User Interaction, following the shared Ontological Model.

How middleware and platform are composed in layers

The Container is the part that lets the Middleware logic execute in
different environments. There are different Containers so that the
Middleware can run on devices with plain Java, computers or embedded
systems running OSGi, or in Android smartphones, so far.

The Container determines how the components of uAAL and the
applications that use it are coded and built. In OSGi they would be
Bundles, in Android they would be APKs, and so on. Currently universAAL
only officially supports these two.

The Peering part is responsible for interconnecting and communicating
the instances of the Middleware regardless of where they are running,
using technologies such as jSLP and jGroups.

More technologies can be added modularly. A hypothetic UPnP
connector (like earlier versions) could discover other nodes with this
connector, and use bridging options for using multiple technologies.

The Middleware delivers buses across multiple instances in different environments

3

The Communication part is the one holding the ultimate logic of the
Middleware that enables the flow of uAAL semantic information across
peers, by defining specific-purposes Busses. These Busses is what
applications connect to, and when they do so, they are in constant
contact no matter the Device, Container or Peering technology they are
running with. There is a bus for each type of communication (Context,
Service and User Interaction), handling its own specific strategy,
semantics, reasoning and match-making of participants.

Each Bus builds on top of the common components of the Middleware.
The communication model is the “skeleton” for the buses. The
representation model defines how ontologies are handled. The
serialization component encrypts and parses messages across nodes.

The Managers build upon the Middleware. They can be considered low
level applications. Together with the Middleware they form the uAAL
execution platform, and are required for its proper operation. Some are
tied to certain Buses, while others are more widely used. They usually
also provide functional APIs to the above final applications.

Finally a uAAL Application is any piece of software that can run on the
Container and that makes use of the uAAL Buses or Managers, whether
by consuming them or providing into them, in order to provide an AAL
Service or a part of it.

Regarding hardware sensor and actuator devices, these are connected
through “exporters”, which are just like an application exporting the
devices interfaces and information into uAAL platform. There would be a
different exporter per technology (KNX, ZigBee...).

A Layer-Oriented scheme of uAAL middleware and managers forming the platform

Sensors and Actuators are plugged into the platform through exporter applications

4

What is an AAL space

The uAAL platform defines the concept of AAL Space. An AAL Space is a
logical environment in which all uAAL Applications can communicate to
each other and the platform through the same buses, seamlessly,
regardless of the node or container they run within and the physical
network beneath. The AAL Services provided by these applications are
oriented to a specific human user (the Assisted Person) or set of users.

The official definition of AAL Space by uAAL is “a smart environment
centred on its human users in which a set of embedded networked
artefacts, both hardware and software, collectively realize the paradigm
of Ambient Intelligence, mainly by providing for context-awareness and
personalization, reactivity, and pro-activity”.

The most typical Space is the Home of an Assisted Person, but other
scenarios are possible in which an AAL Space can be set up in
supermarkets, health care centres, hospitals, airports...

In every Space there is a single Coordinator node that takes care of
creating it for the first time, keeps track of its status and ID, and acts as
entry point for new nodes.

Communication across Spaces is not possible except through a special
Manager called AAL Space Gateway, which takes care of message
exchanges and authorization between different Spaces. However it also
takes care of connecting remote nodes that belong to the original Space,
accomplishing a similar function to that of a VPN, when networked
connection through Peering is not possible.

uAAL Nodes only link to others in same space regardless of network or physical node

Gateways connect different spaces, or remote nodes into same space

5

Ontologies
Knowledge is shared in uAAL in the form of Ontologies. It is its
information model. Ontologies are a way to represent real-life
information so it can be understood by computers. You can think of
Ontologies as a network of concepts linked by properties. One tricky
thing is that while we usually think in tree-view, Ontologies are meshes.

Ontologies can be represented in some standard format such as
serialized RDF, but in uAAL Ontologies have a code representation so
they can be handled by the Middleware. There are tools to convert from
one to another. Ontologies are usually grouped in domains representing
a single field of knowledge, such as Devices, Health or Furniture.

How to build an ontology

In the Middleware representation Ontologies are composed by an
Ontology class that defines the whole Ontology, a Factory for
serialization, and a collection of classes representing the concepts.

Resources are how the concepts are represented. They are the nodes in
the mesh. They are identified by a URI. They can inherit from other
resources, and have properties that link to other resources or datatypes.

In the Middleware representation a Resource is like a class. In addition to
being defined in the Ontology class, there is a class representing it that
can be instantiated to be used from the code, and contains constants that

Factory code for serialization purposes

Resource code that represents a light source concept

public class LightSource extends Device {
 // Resource URI start upper case, properties & instances lower
 public static final String MY_URI =
 LightingOntology.NAMESPACE + "LightSource";
 public static final String PROP_HAS_TYPE =
 LightingOntology.NAMESPACE + "hasType";
 public static final String PROP_SOURCE_BRIGHTNESS =
 LightingOntology.NAMESPACE + "srcBrightness";
 public LightSource() {super();}
 public LightSource(String uri) {super(uri);}
 // A concept resource class must comply with certain methods:
 public String getClassURI() {return MY_URI;}
 // This is for reducing serialization depending on property
 public int getPropSerializationType(String propURI) { ... }
 // This is to determine when an instance is properly built
 public boolean isWellFormed() { ... }
 // There can be as many helper methods as desired, or none
 public void setBrightness(int b) {
 setProperty(PROP_SOURCE_BRIGHTNESS, new Integer(b));
 }
 ...
}

public class LightingFactory extends ResourceFactoryImpl {
 public Resource createInstance(String classURI, String
 instanceURI, int factoryIndex) {
 switch (factoryIndex) {
 case 0: return new LightSource(instanceURI);
 // ...new instances for each index used in Ontology class
} } }

6

identify its URI and properties URI, and helper methods to handle it. All
concept Resources that can be instantiated and handled from code
extend from uAAL´s ManagedIndividual (or another super-class which will
eventually extend ManagedIndividual), which extends from Resource. If
the concept is not supposed to be instantiated it can be defined as
abstract, despite this is not a feature of Ontologies.

Properties are links between the concepts. They are also identified by
URIs and can also inherit from other properties. They can have
restrictions upon them, like cardinality.

For each property there usually are helper methods in its Resource class
to get, set and possibly add a value, although it is always possible to use
the generic method setProperty. It always checks that the value set
satisfies the restrictions. When cardinality is greater than 1, multiple
values can be set as a List.

Datatypes are the native data formats, like Boolean, Integer and so on.
They are always present by default and don´t have properties.

These types are available through TypeMapper to obtain their URI.

Enumerations are sets of instances of Resources, representing different
specific values that a property can point to.

They cannot be instantiated and therefore are created as abstract
Ontological Resources, with convenient methods to initialize them in the
Ontology class. They have a class representing them too, but it´s
different from those representing normal Resources.

Ontology code that defines all concepts and their properties

Application code to register the ontology at startup

public final class LightOntology extends Ontology {
 private static LightingFactory fact = new LightingFactory();
 public static final String NAMESPACE =
 "http://ontology.universaal.org/Lighting.owl#";

 public LightingOntology() {super(NAMESPACE);}

 public void create() {
 Resource r = getInfo();
 r .setResourceComment("Descriptive comment...");
 r.setResourceLabel("Lighting");
 addImport(DataRepOntology.NAMESPACE);
 // ... add imports for every other used ontology
 // Create Light Source concept resource
 OntClassInfoSetup oci =
 createNewOntClassInfo(LightSource.MY_URI, fact, 0);
 oci.setResourceComment("Descriptive comment...");
 oci.setResourceLabel("Light Source");
 oci.addSuperClass(Device.MY_URI);
 oci.addObjectProperty(LightSource.PROP_HAS_TYPE)
 .setFunctional(); // When cardinality 1:1
 oci.addDatatypeProperty(LightSource.PROP_SOURCE_BRIGHTNESS)
 .setFunctional(); // When cardinality 1:1
 oci.addRestriction(MergedRestriction
 .getAllValuesRestrictionWithCardinality(
 LightSource.PROP_HAS_TYPE, LightType.MY_URI, 1, 1));
 oci.addRestriction(MergedRestriction
 .getAllValuesRestrictionWithCardinality(
 LightSource.PROP_SOURCE_BRIGHTNESS, new IntRestriction(
 new Integer(0), true, new Integer(100), true), 1, 1));
 // ... create the rest of concepts
} }

OntologyManagement.getInstance().register(moduleContext,
new LightOntology());

7

Context Events
Context Events are the minimal unit of context information sharing and
are built on the Ontological model of uAAL. The minimal context
information that can be extracted from an Ontological model is a link of
two concepts through a property, modelled as a triple with subject,
predicate and object. This is known as a statement. That is the structure
of a Context Event, along with metadata.

One way to understand Context Events is to think of them as simple
natural language sentences. “User is in Kitchen”, “Thermometer
measures 25 ºC” or “Light is On” are typical examples of context
information that can be shared in uAAL. This basic Subject-Predicate-
Object triple, or SpO, is the core of the Context Event.

What the context event is composed of

Subject is the concept the event is telling information about. It has to be
an instance (an “individual”) of a concept of the Ontological Model.

Predicate has to be one from all the properties that the Subject may
have. It identifies the exact piece of information of interest about the
Subject in this event, which value is the Object.

The Object is the value of the Subject´s property that works as Predicate.
It is an instance (an “individual” or a “literal”) of the type of concept that
can be found at that Subject´s property in the Ontological Model.

A Context Event is composed of the mandatory SpO triple and some metadata

Publishers specify what events they broadcast and subscribers specify what they want

8

The Timestamp of a Context Event is the metadata that marks the time
at which an event was sent. It is a Long literal in UNIX format.

Context Provider is a piece of metadata that describes the application
that generated the event. It is a concept contained in the default platform
Ontological Model, with its own properties.

Confidence metadata indicates how reliable the Provider is about the
information represented by the Context Event. It is an Integer literal
representing a percentage.

Expiration Time metadata is a Long literal understood as milliseconds
after which the information in the Event can be considered outdated.

Constructing a Context Event

The SpO triple is mandatory. Subject and Object must be instances of
concepts validly connected by one of the Subject´s properties. More
properties can be added to both Subject and Object instances but only
the one designated as Predicate is guaranteed to be transmitted.

The Context Provider metadata is mandatory as well. If not manually set,
it´s set automatically with the Publisher registration info. To do it
manually, it has to be an instance of ContextProvider. To reduce Event
size, set the Provider in the event manually without Provided Events
(they are only needed in the Publisher constructor – see next section).

Timestamp metadata is also mandatory but is automatically added and
cannot be set manually. Confidence and Expiration Time are optional.

Application code to create a context event based on existing ontological instances

Application code to create a context event directly

Application code to set metadata in a context event

// Create the event directly
ContextEvent myevent=ContextEvent.constructSimpleEvent(
 MY_LIGHT_URI, LightSource.MY_URI,
 LightSource.PROP_SOURCE_BRIGHTNESS, new Integer(100));

// Set some metadata:
// Instantiate the Context Provider info as a Gauge
ContextProvider myprov = new ContextProvider(MY_PROVIDER_URI);
myprov.setType(ContextProviderType.gauge);
// Set the provider in the event
myevent.setProvider(myprov):
// Set the confidence to 75%
myevent.setConfidence(new Integer(75));
// Set the expiration time to 1 day
myevent.setExpirationTime(new Long(86400000));

// Create an instance of the subject
LightSource light = new LightSource(MY_LIGHT_URI);
// Set the property to be used as predicate to a valid value
light.setBrightness(100);
// Create event with subject and predicate. Object is auto-set
ContextEvent ev = new ContextEvent(light,
 LightSource.PROP_SOURCE_BRIGHTNESS);

9

Context Publishers
Context Publishers are applications that are capable of sending Context
Events. They build these events with the Ontological model and
broadcast them.

In fact the Publisher is the “part” of the application that sends context. An
application may have many, but one is enough in most cases. Publishers
define themselves and what kind of Events they intend to publish so that
Context Bus can facilitate the matchmaking.

How to declare a publisher and send events

One way is to create an extension of ContextPublisher, but there is also a
useful default implementation. Both need an instance of ContextProvider
descriptor when constructed. It has two relevant properties to define.

Provider Type depends on what the whole application will do with the
context information: Gauge if it only publishes context information it
creates. Actuator if not only it publishes it but also allows to change it.
Reasoner if the context published is inferred from other info.

Provided Events identify the type of events the publisher will send. They
are described with Patterns, introduced in next section. If the application
doesn´t know in advance what kind of events it will publish, it must use
more loose Patterns, or even empty ones.

Once created, Publishers send Events by calling the publish method.

Context Publisher code showing only the typical constructor

Application code to create and register a context publisher and publish a context event

Application code to create a default context publisher provided by the platform

public class MyPublisher extends ContextPublisher {
 ...
 protected MyPublisher(ModuleContext context,
 ContextProvider providerInfo) {
 super(context, providerInfo);
 ...
 }
 ...
}

// Instantiate the Context Provider info
ContextProvider myprov = new ContextProvider(MY_PROVIDER_URI);
// Set to type Gauge
myprov.setType(ContextProviderType.gauge);
// Set the provided events to “Unknown” with an empty Pattern
myprov.setProvidedEvents(new ContextEventPattern[] { new
 ContextEventPattern() });
// Create (and register) my Context Publisher. ModuleContext is
obtained elsewhere depending on the Middleware container
MyPublisher publisher = new MyPublisher(moduleContext, myprov);
...
// Publish an event
publisher.publish(myevent);

// Create (and register) a Default Context Publisher. It simply
let´s you send events, which is enough in most cases
ContextPublisher publisher = new
 DefaultContextPublisher(moduleContext, myprov);
...

10

Context Subscribers
Context Subscribers are any application interested in consuming
Context Events. They define a filter to restrict which types of Events they
are exactly interested in.

Again, it is possible to have more than one Subscriber in an application.

How to register to receive events

It´s necessary to extend ContextSubscriber, there is no default
implementation. When instantiated, it must be given the filter for events,
as an array of Context Event Patterns. There are also methods in
ContextSubscriber to dynamically change subscriptions afterwards.

Patterns are collections of restrictions over the fields of an Event, as if
defining ontological restrictions over a Context Event concept. If one is
received that complies with the restrictions, it´s passed to the Subscriber.

Restrictions in a Pattern work in an AND fashion, they all must be met to
pass the event. But Patterns in the subscription array work in an OR
fashion. An event will be received if it matches any of those Patterns.

Whenever an Event passes the filter used in the subscription, the
handleContextEvent method of the Subscriber that defined it is called
with that Event. The Event is guaranteed to contain the mandatory fields
commented before: SpO, Timestamp and Provider. Other metadata may
not be present unless required in the filtering Pattern.

Context Subscriber code with the method to receive context events

Application code to create filter patterns and create and register a subscriber

// This class will be a Context Subscriber
public class MySubscriber extends ContextSubscriber {
 // This is called when an event is received matching the
 subscription filter
 public void handleContextEvent(ContextEvent event) {
 //Do something with the event
 }
 ...
}

// This defines two patterns. If any of them are met by an event,
it will be passed to handleContextEvent(event)
ContextEventPattern[] cep = new ContextEventPattern[2];
// This first pattern is for events about Lights from Gauge
Providers. Notice how ContextEvent is the root for Restrictions
cep[0] = new ContextEventPattern();
cep[0].addRestriction(MergedRestriction.getAllValuesRestriction(
 ContextEvent.PROP_RDF_SUBJECT, LightSource.MY_URI));
cep[0].addRestriction(MergedRestriction.getFixedValueRestriction(
 ContextProvider.PROP_CONTEXT_PROVIDER_TYPE,
 ContextProviderType.reasoner).appendTo(
 MergedRestriction.getAllValuesRestriction(
 ContextEvent.PROP_CONTEXT_PROVIDER,ContextProvider.MY_URI),new
 String[] { ContextEvent.PROP_CONTEXT_PROVIDER,
 ContextProvider.PROP_CONTEXT_PROVIDER_TYPE }));
// The second pattern is for events about any brightness change
cep[1].addRestriction(MergedRestriction.getAllValuesRestriction(
 ContextEvent.PROP_RDF_PREDICATE,
 LightSource.PROP_SOURCE_BRIGHTNESS));
// Create (and register) the Context Subscriber
MySubscriber subscriber = new MySubscriber(moduleContext, cep);

11

Service Ontology
Service Ontology is the shared model between service requester and
provider. It works as an anchor to the Ontological model. It also allows
restrictions over the original model to make services more specific.

Service Ontologies are usually included in the related ontology domain
module, but more can also be created in other modules or in the
applications themselves. The module containing the Service Ontology
must be available to both requester and provider.

Creating service ontologies

A Service Ontology is in fact just a single concept that connects to the
Ontology Model of the domain it is going to handle, by one or more
properties. It inherits from the concept Service included in the Service
Bus. It should be linked to the most “root-like” concept(s) of domain
ontologies, thus allowing providers to handle all possible combinations of
the domain concepts. The property (or properties) linking to the domain
is usually named MANAGES, CONTROLS or HANDLES.

Ontological restrictions can be defined over the Service Ontologies and
therefore over all properties reachable through it. These can be used to
narrow the possible services that can be provided with this Service
Ontology. But in general these restrictions are defined by instances of the
Service Ontology created by Service Callees (see next section), while
generic Service Ontologies should be exactly that: generic.

Ontology code to create a service ontology for lighting services

Ontology concept code that represents the service ontology

// Lighting concept is a service controlling the lights. The
property CONTROLS links it to LightSource concept
oci = createNewOntClassInfo(Lighting.MY_URI, factory, 4);
oci.addSuperClass(Service.MY_URI);
oci.addObjectProperty(Lighting.PROP_CONTROLS);
oci.addRestriction(MergedRestriction.getAllValuesRestriction(
 Lighting.PROP_CONTROLS, LightSource.MY_URI));

// This class represents the Lighting service concept
public class Lighting extends Service {
 public static final String MY_URI =
 LightingOntology.NAMESPACE + "Lighting";
 public static final String PROP_CONTROLS =
 LightingOntology.NAMESPACE + "controls";
 ...
}

Service Ontologies can be seen as an anchor to the ontological model

12

Service Callees and Profiles
Service Callees are those applications that provide services of certain
Service Ontology. They do so by registering Service Profiles.

Service Profiles are the equivalent to methods. They represent the
operation to perform. Starting at the Service Ontology they describe
arguments as a Path to a concept on which an Effect is expected.

An application can actually have more than one Callee. Each Callee can
answer to multiple Profiles. The Profiles are registered when the Callee is
constructed. It is also possible to add more or remove later.

A Callee can use its own instance of a Service Ontology to define its own
restrictions to narrow its provided services. This is done by creating an
extension of the Service Ontology, usually named Provided Service. The
Service Profiles are usually defined in this Provided Service class too.

What is necessary to create a service callee

A Provided Service class is the most usual way to define the provided
services. On one hand, it can define the desired restrictions because it is
an extension of the Service Ontology to be provided. On the other hand,
it´s also used to define the Service Profiles that will be handled by the
Callee, each identified by a URI. If no restrictions are needed then it could
also be possible not to have this Provided Service class and use the
Service Ontology directly instead, declaring the Profiles elsewhere. Provided Service code extending service ontology and defining restrictions and profiles

public class ProvidedService extends Lighting {
 // Profiles and restrictions will be placed here
 static final ServiceProfile[] profs = new ServiceProfile[2];
 private static Hashtable myRestrictions = new Hashtable();
 static {
 // This extends Lighting without using an Ontology class
 OntologyManagement.getInstance().register(new
 SimpleOntology(MY_URI, Lighting.MY_URI, new
 ResourceFactoryImpl() { public Resource
 createInstance(String classURI, String instURI, int index){
 return new ProvidedService(instURI); }
 }));
 // Custom restriction to say it only controls light bulbs
 addRestriction(MergedRestriction.getFixedValueRestriction(
 LightSource.PROP_HAS_TYPE, ElectricLight.lightBulb),
 new String[] { Lighting.PROP_CONTROLS,
 LightSource.PROP_HAS_TYPE }, myRestrictions);
 // Then define here the Service Profiles:
 // This profile is for getting all controlled lights
 ProvidedService prof1 = new ProvidedService(PROF1_GETALL);
 prof1.addOutput(OUTPUT_LAMPS, LightSource.MY_URI, 0, 0,
 new String[] { Lighting.PROP_CONTROLS });
 profs[0] = prof1.myProfile;
 // This one is for turning on a lamp (set brightness 100%)
 ProvidedService prof2 = new ProvidedService(PROF2_TURNON);
 prof2.addFilteringInput(INPUT_LAMP, LightSource.MY_URI, 1,
 1, new String[] { Lighting.PROP_CONTROLS });
 prof2.myProfile.addChangeEffect(
 new String[]{Lighting.PROP_CONTROLS,
 LightSource.PROP_SOURCE_BRIGHTNESS }, new Integer(100));
 profs[1] = prof2.myProfile;
 ...
 }
}

13

Then there is the Service Callee itself. It is an extension of ServiceCallee
from the Service Bus. When created, it must be passed the Service
Profiles it will answer to. Whenever a call is received that matches one of
the profiles, its method handleCall will be invoked, along with the call.
The Callee must then identify which Service Profile was called by looking
into the call´s requested URI. Then it can work with the call, extract the
arguments it knows it has, do something with it and return a response
(success, error, timeout...), along with outputs, if any.

Declaring services with the service profiles

A Profile is created by first defining which Service Ontology is being used
as starting point. This is done by creating instances of the Provided
Service. Then the arguments are added, as many as need. The meaning
of the operation is actually described by the combination of arguments
and their restrictions.

Each argument is identified by a URI that can be later used by the Callee
to handle arriving calls to the Profile. Each argument is described by a
Path and an Effect.

The Path leads to a concept in the Ontological Model, starting from the
Service Ontology. It is represented as an array of the successive
properties to follow from the Service Ontology to the desired concept.

The Effect determines what is expected to happen with the concept at
the end of the path. Possible effects are Add, Change, Remove, Filter and
Output. These are set depending on the method of Service used to define
the argument.

Service Callee code with the method to receive calls

Application code to create and register a callee

public class MyCallee extends ServiceCallee {
 // Called if a request matches a profile (find out which)
 public ServiceResponse handleCall(ServiceCall call) {
 String operation = call.getProcessURI();
 if(operation.startsWith(
 ProvidedService. PROF2_TURNON)){
 // Profile arguments can be taken from the call
 Object input = call.getInputValue(
 ProvidedService.INPUT_LAMP);
 // Make the light turn on here... then return success
 return new ServiceResponse(CallStatus.succeeded);
} } }

// Create (and register) the Service Callee with the profiles
MyCallee callee=new MyCallee(moduleContext,ProvidedService.profs)

Service Profiles differ in the arguments defined over the service ontology model

14

Service Callers and Requests
Service Callers are the applications that request the execution of a
service. This is achieved by issuing Service Requests. The Requests are
matched to registered Profiles and if they are ontologically equivalent,
the Callee(s) that registered them will be called and will give an answer.

Service Requests are the counterpart of Service Profiles, built the same
way but declare what the Caller wants to execute.

One Caller is enough for most applications, but there can be more. There
is also a default implementation. Nothing is needed at construction.

Calling services with service requests

The default implementation is enough to send requests and getting the
response. But if this must be handled asynchronously, ServiceCaller must
be extended, and responses handled in handleResponse method. In any
case, requests are sent with call method of the Caller.

What is sent in the call is a Service Request, which is built the same way
as the Service Profile it intends to call: First create it with the root Service
Ontology, and then add arguments with paths and effects. But because
services are semantic it doesn´t have to be identical to the Profile: just
call what is needed. All services which Profiles match the Request will
respond, which means that a response may have answers from many
services. This is relevant if outputs are requested.

Service Caller code with the method to handle asynchronous responses

Application code to create a request, create a caller, send the request and get outputs

public class MyCaller extends ServiceCaller {
 // Handles async. responses, when sendRequest(call) is used
 public void handleResponse(String requestID, ServiceResponse
 response) {
 // Handle the response
} }

// Create the caller, which doesn´t need extra info
MyCaller caller = new MyCaller(moduleContext);
// Call “get all lamps”. Using Lighting instead of Provided
Service and not specifying light type still matches the profile.
ServiceRequest req = new ServiceRequest(new Lighting(), null);
req.addRequiredOutput(REQUIRED_OUTPUT_LAMPS,
 new String[] { Lighting.PROP_CONTROLS });
// Synchronous call. Asynchronous would be sendRequest(call)
ServiceResponse rsp=caller.call(req);
// Deal with response. There are other methods to get outputs.
if (rsp.getCallStatus() == CallStatus.succeeded) {
 List lampList = rsp.getOutput(REQUIRED_OUTPUT_LAMPS, true);
}

Service Requests that match or don´t the “turn on” profile

15

User Interaction Forms
Forms are the ontological representation of the typical user interaction
components, like textual inputs, multiple selections, buttons, and so on.
Forms are created by UI Callers and sent to UI Handlers to be rendered,
filled by user, and sent back to UI Callers to be processed.

Just like the other Ontological models, Forms can be extended, but the
most usual interfacing options can be achieved with the default Forms.

What the forms are built of

There are three groups in a Form. Controls is where common UI
Elements are put, including trigger buttons. Submits is for common
buttons that finish a Dialog and/or do something. And Standard Buttons
is for system buttons, not usually changed by applications.

A Dialog is an interaction with a Form. There are 4 different types. Main
Menu is for the main screen only, and is not used by applications.
Standard Dialog is the normal Dialog. Subdialog is a Dialog triggered by
a previous one, which comes back after the Subdialog finishes. Message
is a popup that may appear regardless of current dialog, on top of it.

How to compose a user interaction form

The first thing is instantiating a Form depending on the type of Dialog
that is intended, with the right method of Form class. An instance of an

Typical arrangement of the groups of a form in a graphical interface

Typical graphical representations of the different types of dialogs

16

Ontological Resource can be used to later fill the fields of the Form with
initial values, but it is not mandatory, and not necessary in most cases.

UI Elements are added as they are created, to the group passed in their
constructor. Most elements can optionally have a Label, an initial value
and a Property Path. The Path is necessary for Input Elements: it is used
to retrieve the value introduced by the user. It can also be used to link the
Element value with the Resource used to build the Form, if any. If no
Resource is used (or an empty one is) the Path can be arbitrary.

Outputs are for displaying information to the user, without requesting
any information. Property Paths are not mandatory for these. Multimedia
outputs will be limited by the handler rendering the information.

Inputs are Elements where a value is expected to be set by the user.
There are Elements for free textual input or pre-set choices.

Submits are for issuing actions. In graphical interfaces these are buttons,
so Submits are often called buttons. They have an ID used to know which
Submit was issued (“pressed”) by the user.

Labels are identifiers of UI Elements and must not be mistaken for
Outputs. They are only for the user to identify the different Elements.

Groups and Repeats are not Elements themselves but containers that
can be used to place elements inside (Remember the Controls, Submits
and Standard Buttons in the Form? Those are Groups). The Repeat is
used for creating tables or lists of similar elements.

Application code to create a form

// Create a normal Dialog, and don´t use Resource (it´s empty)
Form f = Form.newDialog("Title of the Dialog", new Resource());
// Show a simple output saying what it does
SimpleOutput out = new SimpleOutput(f.getIOControls(), null,
 null, "Select a Lamp");
// A choice selector to select one of 2 lamps
Select1 sel = new Select1(f.getIOControls(), new Label("Lamps",
 null), PATH_LAMP, null, new Integer(1));
sel.addChoiceItem(new ChoiceItem("Lamp1", null, new Integer(1)));
sel.addChoiceItem(new ChoiceItem("Lamp2", null, new Integer(2)));
// Buttons to turn on and off
new Submit(f.getSubmits(), new Label("On", null), ID_SUBMIT_ON);
new Submit(f.getSubmits(), new Label("Off", null),ID_SUBMIT_OFF);

Typical graphical representations of the default UI elements

17

User Interaction Callers
User Interaction Callers are the applications that want to have some
kind of direct interaction with the user. They build a Form that represents
exactly what they want to show to the user and what they want in return.

There can be many UI Callers in an application, but one is usually enough.
It is the only thing needed for both sending and receiving on UI Bus.

Sending requests and handing responses with a caller

UI Requests ship the Forms to the UI Bus. To address the proper Handler,
they are passed the target user, language, required privacy disclosure and
priority level. Requests are sent with sendUIRequest method of the Caller.

Once the request is displayed and filled by the Handler, the UI Response
returns to UI Caller through handleUIResponse. The Caller can analyse
which Submit triggered the response, and can extract the filled inputs
from within with the right Property Path. If no more Forms are sent from
there, the system will automatically go back to the Main Menu.

Requests can be sent at any time but to allow a user to manually “launch”
an application dialog this must be registered in Main Menu. This is done
though Service bus. A special Service Profile must be registered and
there must be a Service Callee that launches the application main dialog
when the Profile is requested. The profile is called by the Dialog Manager
Main Menu configuration files, adding a special line for each button. Main Menu txt file line that will display a button that will call the above profile

Provided Service code including a new profile to start app main dialog

Application code to create a caller, create a ui request with a form and send the request

UI Caller code with the method to handle responses

public class MyUICaller extends UICaller {
 // This is called when the response to a UI request arrives
 public void handleUIResponse(UIResponse resp) {
 // Check which submit “button” was “pressed”
 if (resp.getSubmissionID().equals(ID_SUBMIT_ON)) {
 // This is how user input is taken
 lampNumber=(Integer)resp.getUserInput(PATH_LAMP);
 // Turn on the lamp identified by lampNumber
 }
 ...
 // If no more Forms are sent here, system returns to menu
}

// Create the caller, which does not need extra registration info
MyUICaller uicaller = new MyUICaller(moduleContext);
// Create a UI request for a given user and send the Form f
UIRequest req = new UIRequest(new User(USER_URI), f,
 LevelRating.middle, Locale.ENGLISH, PrivacyLevel.insensible);
// Send the UI request
uicaller.sendUIRequest(out);

// Profile that starts the app UI. Service Callee must handle it
and send UI request with app dialog when PROF_STARTUI is called
ServiceProfile prof =
 InitialServiceDialog.createInitialDialogProfile(
 "http://my.ont.org/MyApp.owl#MyMenu ",
 "http://mycompany.com ", "My App Menu", PROF_STARTUI);

/My App|http://mycompany.com|http://my.ont.org/MyApp.owl#MyMenu

18

User Interaction Handlers
User Interaction Handlers are special types of applications in charge of
translating the Forms sent by UI Callers to a physical rendering that a
user can interact with, such as a GUI, a sound output or Web page. Then
interpret the user responses to fill in the information requested by UI
Callers into the Form and send it back. There can be several UI Handlers
in different locations, with different modalities, and the UI Callers are
oblivious to them, thus achieving multi-modal and multi-location
interaction.

UI Handlers are special applications that are considered Managers in the
platform. Developers of everyday applications would never have to deal
with UI Handler code, since the UI Bus makes these applications
completely agnostic of these issues, unless a developer is interested in
developing specifically a new UI Handler.

How user interaction handlers work

Despite coding UI Handlers is out of scope in this document, it may be
interesting to know how they work. Every UI Request sent by UI Callers is
added automatically some metadata about the addressed user. This is
used by the UI Bus to find the most suitable Handler, because Handlers
are registered with a set of adaptation parameters. The Handler with the
most appropriate parameters is selected to render the Request, and then
will have to send back the user input.

UI Handler code with the required methods only

public class MyUIHandler extends UIHandler {
 // Called when a request is sent to this Handler. It must
 render the Form it carries and put the user input inside
 public void handleUICall(UIRequest uiRequest) { ... }

 // If some preferences of the user change, the Handler may
 want to adapt to them, like screen size
 public void adaptationParametersChanged(String dialogID,
 String changedProp, Object newVal) { ... }

 // It may happen that a dialog is interrupted for some reason
 public Resource cutDialog(String dialogID) { ... }

 ...
}

UI Handlers render the same form differently

19

Managers
A uAAL Application is the software part of an AAL Service, and is
understood as a piece of software that communicates with others by
making use of the uAAL Execution Platform. A Manager is an Application
that is part of the platform itself and is necessary for its proper operation,
or provides relevant basic services or events for other applications.

Some Mangers are mandatory for the platform to work. Some have to be
present only in one Node but not the rest. Others simply provide
convenient services for upper Applications or other Managers.

List of managers provided by uAAL

Context History Entrepôt: It stores all Context Events sent through
Context Bus and maintains the status of the context information updated
according to them. It provides services for consulting the history of
events and obtaining the current context information status. The
platform can run without it but it is crucial for other Managers, so it can
be considered mandatory. There must only be one instance of it.

Profiling & Space Servers and Editor: These servers provide convenient
services in the Service Bus for applications to obtain context (profile and
space) information without having to deal with CHE. The editors allow a
human user to edit this information. They are not mandatory but strongly
recommended.

Situation Reasoner: Listens to Context Bus and analyses basic Context
Events. Based on a set of rules and conditions it composes new higher
level events based on those, and they are sent through Context Bus. It
provides services to add or edit those rules. It is an optional Manager.

Dialog Manager: This Manger is mandatory for the UI Bus to work
properly. It takes care of maintaining the uAAL Main Menu interface and
initiating the application interfaces listed there. It also handles UI dialog
stack and manages adaptation properties, which are vital for enabling the
right UI Handler. There must only be one of these.

UI Handlers: Refer to the “User Interaction Handlers” section for details.
Currently uAAL provides a few “official” handlers, like Swing-based GUI
Handler for PC mouse + keyboard interaction and Web Handler for Web
Browser interaction. Other experimental Handlers are in store.

Resource Server: Mandatory for most UI Handlers, applications can store
multimedia resources here that can be later referenced by the Handlers.

Remote Import/Export: These managers act as proxies that can
represent external web services as universAAL services inside the space,
or publish universAAL services of the space to the outside as web
services.

Other Managers: There are other optional Managers providing useful
features such as Security Authorization, Document Encoder or the Device
Exporters and AAL Space Gateway described in the first section.

20

The universAAL Primer - Advanced

